Last spring (more precisely, April-May 2011) I participated in a “Groupe de Travail” organized by Sylvain Crovisier and Jerome Buzzi around the theme “Cocycles over hyperbolic dynamics”. As you can see in this webpage here, after a preparatory talk by F. Ledrappier (on his theorem on vanishing of exponents and determinism of the measures on projective spaces which are invariant under the action of random sequences of matrices), I gave two expository talks (one in April 29 and another in May 20) about Marcelo Viana’s article “Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents”.
My plan is to make the notes I prepared for these expositions available here: today’s post is a slightly expanded version of my notes for the first expository talk, and a future post will correspond to my notes for the second (and final) exposition.
–Linear Cocycles–
Let be a vector bundle whose fibers are isomorphic to
where
and
. We say that a vector bundle automorphism
is a linear cocycle over a transformation
if
.
Example 1 Given
and a matrix-valued function
, we can form a linear cocycle
by considering the (trivial) vector bundle
and defining
.
Example 2 Given a diffeomorphism of a manifold
, its derivative
is a linear cocycle over
. We call
the derivative cocycle.
Let be a measurable linear cocycle over an invertible map
preserving a probability measure
. Suppose that
comes equipped with a family
of norms
on its fibers
,
, such that
is
-integrable. Here,
is the linear map
induced by
. In this context, Oseledets theorem implies that, for
-almost every
, we have a splitting
and a collection of real numbers such that
for every . Moreover, the Lyapunov exponents
and the Oseledets subspaces
depend measurably on
.
Remark 1 Lyapunov exponents
are constant along
-orbits. Therefore, if
is ergodic, then the Lyapunov exponents are constant (
-almost everywhere). In this case, we denote by
the value of these constants.
In the sequel, we will be interested in the positivity of largest Lyapunov exponent
under appropriate smoothness conditions on the linear cocycle . In particular, we will need the following definitions:
Definition 1 Given
and
, the set
denotes the set of
linear cocycles
over
whose
th derivative is
-Hölder continuous. Here, whenever
, we assume that the basis
and the vector bundle
have
-structures. Moreover, given a Riemannian metric
on
, we denote by
the subset of
consisting of linear cocycles
verifying
for all
. Below, we will equip
and
with its natural
-topology.
–Setting–
In his article, Marcelo considers linear cocycles over two classes of hyperbolic systems: uniformly hyperbolic homeomorphisms and non-uniformly hyperbolic diffeomorphisms. Below we explain the main features of these systems.
Given a continuous map of a compact metric space and a point
, the stable set of
is
and the stable set of size is
If in addition is invertible, one can define unstable sets and unstable sets of size
by replacing
by
in the previous definitions.
The first class of systems is:
Definition 2 A homeomorphism
is uniformly hyperbolic if there are
such that, for every
,
for all
and
;
for all
and
;
- if
, then
; denoting by
the unique point in
, we also require that
depends continuously on
and
.
The second class of systems is:
Definition 3 Let
be a
-diffeomorphism (
) of a compact manifold
and
be a
-invariant non-atomic probability. We say that
is (non-uniformly) hyperbolic if the Lyapunov exponents
of the derivative cocycle
are nonzero at
-almost every
.
Given non-uniformly hyperbolic and
such that the Lyapunov exponents
and the Oseledets subspaces
are well-defined, we denote by
, resp.
, the sum of all Oseledets subspaces associated to negative, resp. positive, Lyapunov exponents. Starting from seminal works of Pesin, we dispose nowadays of a whole literature (sometimes called Pesin theory) dedicated to the nice properties of non-uniformly hyperbolic systems. For our purposes, we will need the following properties assured by the so-called Pesin stable manifold theorem: for
-almost every
, there are
and
-disks passing through
(a.k.a. Pesin local stable and unstable manifolds of
) such that
- at
, we have that
is tangent to
and
is tangent to
;
- for every
, there exists
such that, for any
,
- (a)
for any
;
- (b)
for any
;
and
;
and
.
Moreover, the constants ,
and the sizes of the disks
and
can be chosen to depend measurably on
.
In a nutshell, Pesin stable manifold theorem says that the measurable plane fields and
can be locally integrated into local disks
and
whose sizes depend measurably on
. Also, the distances of iterates of points in such local disks are exponentially contracted (in the future or in the past) by an exponential rate essentially equal to the Lyapunov exponent of the center
of these disks. Finally, any point whose (future or past) iterates converges to the (future or past) iterates of
(i.e., any point in the stable
or unstable
sets of
) must approach it in an exponential way (this is expressed by the fact that, after iterating an adequate number of times, the orbit enters the local disks
or
). For a proof of Pesin stable manifold theorem, we recommend Pesin’s original article or the article of A. Fathi, M. Herman and J.-C. Yoccoz).
The fact that the objects depend measurably on the points allows us the so-called hyperbolic blocks. Roughly speaking, these are “large” compact sets where the objets appearing in Pesin stable manifold theorem depend continuously on the point. More precisely, from the measurable dependence of objects and Luzin theorem, for every , we can select
a compact set such that
and
for any
;
- the disks
and
depend continuously on
;
when
and
.
In particular, the sizes of and
and their angles
are uniformly bounded away from zero for
.
Finally, the class of invariant measures considered by Marcelo are the measures with a local product structure. In a few words, these are measures whose relationship with the Pesin stable and unstable manifolds is nice. More concretely, given a hyperbolic block
, we take a small constant
such that, for any two points
with
, we have
. In the sequel, we denote by
the unique point in
, and we observe that the corresponding map
is continuous. Given
, we define
and
i.e., is the image of
under the map
. Pictorially, the sets
,
and
can be seen as follows:

In this context, we have the following definition:
Definition 4 We say that
has local product structure if, for every
-generic
and
as above, we have that the restriction of
to
is equivalent to the product measure
, where
is the projection of
to
and
is the projection of
to
.
Remark 2 This definition makes sense in both cases of non-uniformly hyperbolic diffeomorphisms and uniformly hyperbolic homeomorphisms. In the case of volume-preserving non-uniformly hyperbolic diffeomorphisms
, the Lebesgue measure
has local product structure because, as it was shown by Y. Pesin, the stable and unstable manifolds form absolutely continuous laminations. More generally, every hyperbolic measure
with absolutely continuous disintegration along the stable and unstable laminations has local product structure (as it was shown by C. Pugh and M. Shub). Finally, any equilibrium measure
associated to the restriction
of an Axiom A
diffeomorphism
to a basic set
and a Hölder continuous potential
(i.e., a probability measure
verifying the variational principle
) has local product structure (see e.g. R. Bowen’s book).
–Statement of results–
In the case of non-uniformly hyperbolic, Marcelo showed the following results:
Theorem 5 For all
and
with
and
ergodic hyperbolic measure with local product structure, the set of cocycles
whose top Lyapunov exponent is positive, i.e.,
is open and dense in
.
Remark 3 Even though I didn’t check all details, I think that the previous statement could be generalized to “non-uniformly hyperbolic homeomorphisms”
in the sense that, besides the following Pesin theory like properties
- for
-a.e.
, there are constants
,
and “local” stable and unstable disks
,
such that, for any
, \subitem (a)
for any
; \subitem (b)
for any
;
,
and the sizes of the local disks
,
depend measurably on
;
and
;
and
;
- the local stable and unstable disks are topologically transverse in the sense that, for any hyperbolic block
(where
and
), one can find
such that
whenever
and
;
has product local structure in the sense that
is equivalent to the product measure
where
is the projection of
to
, where
,
are defined in the same way as above,
one also impose the following “Katok’s shadowing lemma” like property:
- there is a countable family
of “hyperbolic blocks” (say
) with
as
such that, for each
and
, there are constants
such that for every
and
with
and
, there is a periodic point
of period
satisfying:
- (a)
- (b)
and
have size
(at least) and they are topologically transverse to the local stable and unstable disks of any
in a
-neighborhood of
;
- (c)
for every
.
However, this notion of “non-uniformly hyperbolic homeomorphisms” is not very useful as the main source of examples of such systems are precisely non-uniformly hyperbolic diffeomorphisms.
Essentially by combining Theorem 5 with the ergodic decomposition theorem, one is able to derive the following corollary:
Corollary 6 For every
,
with
, and
hyperbolic measure (not necessarily ergodic) with local product structure, the set
of cocycles
with
for
-a.e.
is a Baire residual subset of
.
On the other hand, in the case of uniformly hyperbolic homeomorphisms, Marcelo is able to recover the full conclusion of Theorem 5 even for non-ergodic measures:
Corollary 7 For every
,
with
,
uniformly hyperbolic homeomorphism, and
probabilitiy measure with local product structure, the set
of cocycles
with
for
-a.e.
is open, dense and its codimension is
in
.
Remark 4 In Corollary 7, if one assumes that the cocycle
is dominated (roughly speaking this means that the dynamics on the fibers has expansion/contraction rates situated “between” the expansion/contraction rates of the base dynamics
), then the set
may be chosen independently of measure
(as it was shown by C. Bonatti, X. Gomez-Mont and M. Viana), and the Lyapunov spectrum is simple, i.e., the multiplicity of all Lyapunov exponents of
is 1 (as it was shown by C. Bonatti and M. Viana).
Partly motivated by the results mentioned in the remark above, Marcelo conjectures that:
Conjecture. Theorem 5 and Corollaries 6, 7 remain true if one replaces “” by “simple Lyapunov spectrum” in their conclusions.
Remark 5 (Historical remark) These results in the same lines of previous theorems of H. Furstenberg, A. Raugi, Y. Guivarc’h, I. Goldsheid, G. Margulis on the Lyapunov spectrum of identically and independently distributed (i.i.d. for short) random products of matrices, and Bonatti, Gomez-Mont, Viana, Bonatti, Viana on the Lyapunov spectrum of uniformly hyperbolic homeomorphisms, and Avila, Viana on the Lyapunov spectrum of the so-called Kontsevich-Zorich cocycle.
Remark 6 The assumption
is necessary:
- by the works of J. Bochi, and J. Bochi, M. Viana, we know that vanishing exponents may be locally
generic (i.e., one can construct
open sets of cocycles where vanishing exponents is a
Baire residual property);
- by the works of L. Arnold, N. D. Cong and A. Arbieto, J. Bochi, we know that vanishing exponents is a
generic property for all
.
Our long-term goal here is to present the proof of Theorem 5. In the next section, we describe some of the main steps towards this result.
–Strategy of proof of Theorem 5–
We begin with some (technical) preliminary reductions. Firstly, we notice that, up to replacing the metric by
(
), one can assume that our cocycles are Lipschitz, i.e.,
and
,
. Secondly, as we’re going to see, all subsequent arguments will be local in nature, so that one can also assume that
(where
or
). In particular, under this assumption, we can think of
as the set
equipped with the norm
In the sequel, an important role will be played by the projective cocycle naturally associated to a linear cocycle
.
In this language, the proof of Theorem 5 can be divided into the following steps:
- First step: One shows that
for
-a.e.
implies that the cocycle is dominated at
(in a sense that is slightly weaker than the one studied by Bonatti, Gomez-Mont, Viana). Then, one shows that this domination at
-a.e.
implies the existence of nice stable and unstable manifolds for the projective cocycle
at
(and, moreover, these
-invariant manifolds are graphs over the stable and unstable manifolds for
at
). In particular, these
-invariant manifolds can be used to define stable holonomies
for two points
in the same stable manifold and unstable holonomies
for two points
in the same unstable manifold.
- Second step: By the compactness of the projective space
, we have that
always supports
-invariant measures
projecting to
under the natural projection
. By Rokhlin’s disintegration theorem (see this link here for Rokhlin’s original article, and this link herefor a modern exposition by Marcelo of the same result), any such probability measure
can be disintegrated into an essentially unique family
, that is, we can write
and the family is unique in the sense that any two families verifying the previous equation must coincide up to a set of zero
-measure. By a result of F. Ledrappier, we will see that
implies
and
. In other words, the disintegration
is invariant under stable and unstable holomies whenever
. Actually, as I already mentioned, F. Ledrappier gave a talk on his result at the “groupe de travail” as a “preparation” for my expositions. So, during my talks it was assumed previous knowledge of F. Ledrappier’s theorem, and I will also do so here: we’ll content ourselves to state and use Ledrappier’s theorem without further mentions to its proof (even though this is a very interesting theorem lying at the heart of this proof). For more details, I recommend reading the original article (since it is not very long). In any case, the invariance under holonomies of the disintegration of
can be used to show that the map
is continuous. In particular, as it is known that periodic points are dense when
is non-uniformly hyperbolic, this will allow us to say that the dynamical behavior of periodic points affects the entire dynamics. Notice that this “contamination by periodic points” (as Marcelo likes to call it) is only possible when
, and it is quite remarkable: even though the set of periodic points has zero
-measure (as
is non-atomic), the “non-wildness” of the cocycle (expressed by the property
) permits to say that they matter for the global dynamics. Of course, this is a particularity of linear cocycles with vanishing exponents and it is far from being true in general.
- Third step: Using certain nice properties of the so-called blocks of dominations (analogs of Pesin’s hyperbolic blocks for
), one can construct an arbitrarily large number of periodic points, all of them being dynamically related (“heteroclinically linked by their invariant manifolds”). Here, it is crucial that
has local product structure!
- Fourth step: In the case
, we will complete the proof of Theorem 5 by means of the following argument. Given
, we select
pairwise distinct periodic points of
. Recall that a matrix
of
having some eigenvalues with the same norm is a phenomenon of codimension 1 (at least). Hence, we have that the fact that the cocycle
is “typical” over
, i.e., the eigenvalues of
has eigenvalues of distinct norms (where
is the
-period of
) for each
has codimension
. On the other hand, if
at
-a.e.
, by the second step above we have that
for all
. Moreover, since the cocycle
is typical over
, we know that
is a linear combination of Dirac measures supported on the eigenspaces of
. Hence, the equality
implies that the
-image of some eigenspace of
coincides with the
-image of some eigenspace of
. As we’re going to see later, this coincidence at one heteroclinic point
is a positive codimension phenomenon, so that its validity at all heteroclinic points is a codimension
phenomenon. Because
is an arbitrary integer, we see that set of cocycles
with
at
-a.e.
has
codimension, that is, one gets Theorem 5 in the case
. However, in the remaining case
, we can not proceed as above: indeed, the set of matrices in
with a pair of complex conugate eigenvalues is open, so that we can’t say anymore that “a matrix with some eigenvalues of same norm is a codimension 1 phenomenon”. In particular, this case will introduce a few technical issues that we prefer comment only in due time.
This being said, let me mention that we’ll split the proof of Theorem 5 into two blog posts (in a way more or less corresponding to my two talks at the “groupe de travail”). More precisely, in the remainder of today’s post we will give more details on the first step above, and we will leave the discussion of the other three steps for a subsequent post.
–1st step of the proof of Theorem 5: domination and invariant foliations–
We start the final section of today’s post with the notion of “domination”. Given a non-uniformly hyperbolic system,
a
-cocycle and
a hyperbolic block of
, we define, for each
,
,
as the set of points
such that
and
for all (
).
Definition 8 We say that
is
-dominated (
) if
where
.
Roughly speaking, since the parameters and
controls the rates of hyperbolicity of
at a point
, we see that the domination condition says that the “strength of hyperbolicity” (measure by
) of the cocycle
along the fibers
can’t surpass the strength of hyperbolicity on the basis
(measured by
and
): this is the content of the condition
. In other words, if we consider the dynamics of the projective cocycle
, then the domination condition
is some sort of quantitative partial hyperbolicity of
at
: the stable and unstable directions of
correspond to the ones of
, while the “central / dominated” direction is the fiber direction
(as, given a matrix
, the norm of its projective action
and its inverse
are bounded from above by
; in particular, this justifies the choice of the expressions
and
in the previous definition to measure the strength of hyperbolicity of [iterates of]
at the fiber directions).
In the sequel, we will to study the relationship between vanishing exponents and domination.
Proposition 9 For
-a.e.
with
, we have that
is
-dominated for every
.
In few words, this proposition says that the vanishing of Lyapunov exponents at -typical point implies “
-domination” (i.e.,
-domination for all
). To prove this proposition, we will need the following Lemma.
Lemma 10 For all
and
-a.e.
, there exists
such that
for every
.
Proof: Take such that
and
a large integer with
where . Let
be the “average sojourn time” of the
-orbit of
inside
and put
. By sub-multiplicativity of norms, we have that
for any . For
, fix
large so that
for each . It follows that
By putting the previous two inequalities together, we see that -a.e.
satisfy the conclusion of the Lemma with
. On the other hand,
so that . Since
is arbitrary, by letting
, we see that the proof of the Lemma is complete.
Corollary 11 Let
and
with
(where
is the dimension of the fiber
). Then, for
-a.e.
with
, one has
for some
.
Proof: Take with
, and
,
satisfying the conclusion of the previous Lemma, i.e.,
Since , we have that
for all
, and, a fortiori,
for all
. Hence,
that is, .
At this stage, it is not hard to check that Proposition 9 is a direct consequence of this corollary.
Remark 7 One of the reasons that Marcelo treats the issue of vanishing top Lyapunov exponent
but not the simplicity one is more or less explained by the proof of Proposition 9: while absence of positive top exponent (i.e.,
) implies a certain “domination” (a crucial ingredient in the proof of Theorem 5 as it allows the existence of holonomies and contamination by periodic points), it is not obvious that the absence of simplicity implies some sort of domination or other nice property allowing for the “contamination by periodic points” argument. In fact, as the reader can see from these two articles of C. Bonatti, M. Viana, and A. Avila, M. Viana, in all situations (as far as I know) where one can deduce simplicity, either the cocycle is (a priori) assumed to be dominated (the case of Bonatti-Viana article) or locally constant (the case Avila-Viana article). In the former case, the existence of holonomies follows the arguments we present below, while in the former case, the existence of holonomies is granted for free (even in absence of domination).
Our next goal is to derive the existence of nice strong stable and unstable manifolds of the projective cocycle at
(which are Lipschitz graphs over the stable and unstable manifolds of
at
) whenever
is
-dominated. To do so, we need a preliminary result about the existence of holonomies and
-dominated points.
Proposition 12 There exists
such that, for every
![]()
-dominated, say,
with
, and
, the following limit
(the stable holonomy between
and
) exists, and, moreover,
and
.

The proof of this proposition relies on the following “bounded distortion” type lemma:
Lemma 13 There exists a constant
such that
for all
,
.
Proof: Firstly, we observe that
where and
.
Secondly, since being a Lipschitz cocycle, one has, for some constant
,
and
whenever .
Finally, by the domination assumption , we have
By putting these estimates together, one can check that the Lemma follows (with ).
Now we can complete the proof of Proposition 12:
Proof: We claim that is a Cauchy sequence. Indeed, we observe that
Since is Lipschitz,
whenever . By combining these estimates with Lemma 13, one obtains
Because (by
-domination), the claim is proved. In particular, the limit
exists and it satisfies
with . Finally, the verification of the identity
is left as an exercise to the reader.
Corollary 14 There exists
such that for every
-dominated
, say
,
, and
, the following limit
exists and it satisfies
Proof: Since , the desired limit exists (by Proposition 12) and it is
. Moreover, by the bounded distortion type Lemma 13 and the estimate (1) above (with
replaced by
), one obtains
By summing over , we deduce the last statement of the Corollary.
Remark 8 Note that if
is dominated for
, say
, then
is dominated for
whenever
is sufficiently
close to
: more precisely, for each
, we can select a
neighborhood
of
such that
when
. Similarly, the reader can check that the constants
and
above can be taken uniform in a
neighborhood of
. In particular, all statements above hold uniformly in a
neighborhood of
.
Closing today’s post, we study the dependence of the holonomies on the cocycle . In this direction, we get the following result under a
-domination assumption.
Lemma 15 Assume that
is
-dominated for
, say
,
. Then, there is a
neighborhood
of
such that, for every
, the map
is
and its derivative is
Proof: Fix with
. By the previous remark, we can select a
neighborhood
of
such that
for every
. By the bounded distortion type Lemma 13,
, and by the previous corollary,
. On the other hand,
and
where . It follows that the expression above defining
converges as
where .
Now, we recall that as
and each
is
on the
-variable with derivative
Thus, our task is reduced to show that uniformly. Keeping this goal in mind, we observe that the previous corollary implies that
for each . Thus, the difference between the ith terms of
and
is bounded by
where . Putting this estimate together with the bounds of the previous paragraph applied to the terms
, we deduce that
Because , we get that the right-hand side of this estimate goes to
as
. This proves the Lemma.
So, this is all for today! Next time, we will complete the proof of Theorem 5 by discussing the remaining steps in the strategy of proof presented above.
Leave a Reply