About two weeks ago, Weixiao Shen gave the talk “*Hausdorff dimension of the graphs of the classical Weierstrass functions*” during the Third Palis-Balzan International Symposium on Dynamical Systems.

In the sequel, I will transcript my notes from Shen’s talk.

**1. Introduction **

In Real Analysis, the classical Weierstrass function is

with .

Note that the Weierstrass functions have the form

where is a -periodic -function.

Weierstrass (1872) and Hardy (1916) were interested in because they are concrete examples of continuous but nowhere differentiable functions.

Remark 1The graph of tends to be a “fractal object” because is self-similar in the sense that

We will come back to this point later.

Remark 2is a -function for all . In fact, for all , we have

so that

whenever , i.e., .

The study of the graphs of as fractal sets started with the work of Besicovitch-Ursell in 1937.

Remark 3The Hausdorff dimension of the graph of a -function isIndeed, for each , the Hölder continuity condition

leads us to the “natural cover” of by the family of rectangles given byNevertheless, a direct calculation with the family

does notgive us an appropriate bound on . In fact, since for each , we have

for . Because is arbitrary, we deduce that . Of course, this bound is certainly suboptimal for (because we know that anyway).Fortunately, we canrefinethe covering by taking into account that each rectangle tends to be more vertical than horizontal (i.e., its height is usually larger than its width ). More precisely, we can divide each rectangle into squares, say

such that every square has diameter . In this way, we obtain a covering of such that

for . Since is arbitrary, we conclude the desired bound

A long-standing conjecture about the fractal geometry of is:

**Conjecture** (Mandelbrot 1977): The Hausdorff dimension of the graph of is

Remark 4In view of remarks 2 and 3, the whole point of Mandelbrot’s conjecture is to establish the lower bound

Remark 5The analog of Mandelbrot conjecture for the box and packing dimensions is known to be true: see, e.g., these papers here and here).

In a recent paper (see here), Shen proved the following result:

Theorem 1 (Shen)For any integer and for all , the Mandelbrot conjecture is true, i.e.,

Remark 6The techniques employed by Shen also allow him to show that given a -periodic, non-constant, function, and given integer, there exists such that

for all .

Remark 7A previous important result towards Mandelbrot’s conjecture was obtained by Barańsky-Barány-Romanowska (in 2014): they proved that for all integer, there exists such that

for all .

The remainder of this post is dedicated to give some ideas of Shen’s proof of Theorem 1 by discussing the *particular* case when and is large.

## Recent Comments